C-Nucleosides. 11.t Synthesis of Quinoxaline C-Nucleosides through Condensation of 1,2-Diaminobenzenes with 6-Hydroxy-6-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)-2,6-dihydropyran-3-one

Isamu Maeba,* Kazuhiro Kitaori, Yoko Itaya, and Chihiro Ito
Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468 Japan

Abstract

The synthesis of 6 - and 7 -substituted-2-(β - D -ribofuranosyl) quinoxaline and 7 - and 8 -substituted-1(β - D-ribofuranosyl) pyrrolo[1,2-a]quinoxaline from 6 -hydroxy-6-(2,3,5-tri-O-benzoyl- β-D-ribofuran-osyl)-2,6-dihydropyran-3-one (1) is described. Treatment of (1) with 1,2-diamino-4-chlorobenzene (2a) afford three compounds, the 6 - and 7 -chloroquinoxalines (3a) and (3b) and the 7 -chloropyrrolo 1,2 -a]quinoxaline (4a) in 23, 43, and 9% yield, respectively. The position of the substituent in products (3a) and (3b) was determined by comparison of these ${ }^{1} \mathrm{H}$ n.m.r. spectra with those of the corresponding N-oxides (5a), (6a), and (5b), (6b), prepared by oxidation of compounds (3a) and (3b) with m-chloroperbenzoic acid. The position of the substituent in (4a) was confirmed by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range COSY experiment with corresponding deblocked pyrrolo[1,2a]quinoxaline ($\mathbf{4 c}$). Treatment of compound (1) with 1,2-diamino-4-nitrobenzene ($\mathbf{2 b}$) afforded two compounds, the 6 -nitroquinoxaline (3c) and the 8 -nitropyrrolo[1,2-a]quinoxaline (4b). Deprotection of compounds (3a-c), (4a, b), (5a, b), and (6a, b) with methanolic sodium hydroxide afforded ($\mathbf{3 d}-\mathbf{f}$), ($4 \mathbf{c}, \mathbf{d}$), ($5 \mathbf{c}, \mathbf{d}$), and ($6 \mathbf{c}, \mathbf{d}$), respectively.

In a recent report from our laboratory, we described the preparation of a functionalized C-glycoside, 6 -hydroxy-6-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-2,6-dihydropyran-3-one (1), and its utilization in the synthesis of quinoxaline and pyrrole C nucleosides. ${ }^{1}$ We have investigated a convenient and general synthesis of quinoxaline derivatives through condensation of 1,2-diaminobenzenes with compound (1). It was of interest to examine whether 6 -substituted quinoxaline C-nucleosides or the corresponding 7 -isomers would be obtained on treatment of 1,2 -diamino-4-substituted benzenes with compound (1). The key synthetic intermediate pyranulose (1) can be obtained readily from 2 -($2,3,5$-tri- O-benzoyl- β-D-ribofuranosyl)furan by our previously published procedure. ${ }^{1}$
Treatment of 1,2-diamino-4-chlorobenzene (2a) with pyranulose (1) in chloroform under reflux gave a mixture of 6-chloro-2($2,3,5$-tri- O-benzoyl- β-d-ribofuranosyl)quinoxaline (3a), 7-chloro-2-($2,3,5$-tri- O-benzoyl- β-D-ribofuranosyl)quinoxaline (3b), and 7 -chloro-1-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)pyrrolo $[1,2-a]$ quinoxaline (4a) in 23,43 , and 9% yield, respectively (Scheme 1). The position of the substituent in compounds ($\mathbf{3 a}$) and ($\mathbf{3 b}$) was determined by comparison of their ${ }^{1} \mathrm{H}$ n.m.r. spectra with those of the corresponding N-oxides (5a), (6a), and ($\mathbf{5 b}$), ($6 \mathbf{b}$), prepared by oxidation of (3a) and (3b) with m-chloroperbenzoic acid (MCPBA). The ratios of 1-oxide (5a)/4-oxide (6a) and 1 -oxide ($\mathbf{5 b}$)/4-oxide ($\mathbf{6 b}$) were $\sim 1: 3$, respectively. The position of the $\mathrm{N}-\mathrm{O}$ group in these N -oxides was also determined by analysis of the ${ }^{1} \mathrm{H}$ n.m.r. spectra of the corresponding N-oxides. In ${ }^{1} \mathrm{H}$ n.m.r. spectra, the signals for the proton adjacent to the N-oxide underwent an upfield shift relative to the parent quinoxaline, whereas the signals due to the proton at the peri-position to the N-oxide were displaced downfield. ${ }^{2}$ The signal of $3-\mathrm{H}$ of 4 -oxide ($6 \mathbf{a}$) at $\delta 8.61$ occurs at higher field than that of (3a) at $\delta 9.06$, and 3 -H of 1 -oxide (5a) shifted to $\delta 9.04$. These data indicate that (5a) and (6a) are the 1oxide and 4 -oxide, respectively. The spectra of compounds (5a) and (6a) contained doublets at $\delta 8.47(J 9.4 \mathrm{~Hz})$ and $8.51(J 2.0$

[^0]Hz), which could be assigned to $8-\mathrm{H}$ and $5-\mathrm{H}$ at the position peri to the N-oxide. These coupling constants indicated that the chloro group was located at the 6 -position. As summarized in Table 1, (5b) and ($\mathbf{6 b}$) are the 1 -oxide and 4 -oxide, respectively. The chloro group was located at the 7-position as follows. The position of the substituent in the pyrrolo [1,2-a]quinoxaline (4a) was confirmed by a ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range COSY experiment with the corresponding deblocked pyrrolo [1,2-a]quinoxaline (4c). In ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range experiments of $(\mathbf{4 c})$, a correlation was observed between 9-H at $\delta 8.46(J 9.1 \mathrm{~Hz})$ and C-5a and C-7 at $\delta_{\mathrm{C}} 137.93$ and 129.06. Other long-range correlations are shown by arrows in the Figure. This data indicated that the chloro group was located at the 7 position. Coupling constants for the ${ }^{1} \mathrm{H}$ n.m.r. spectra are given in Table 2.
Next, the reaction between 1,2-diamino-4-nitrobenzene ($\mathbf{2 b}$) and the pyranulose (1) afforded 6-nitro-2-(2,3,5-tri- O-benzoyl-β-d-ribofuranosyl)quinoxaline (3c) in 40% yield without formation of the 7-nitroquinoxaline isomer, and small amounts of 8 -nitro-1-(2,3,5-tri- O-benzoyl- β-D-ribofuranosyl)pyrrolo-[1,2-a]quinoxaline (4b). In order to determine the position of nitro group, we attempted to prepare the corresponding N oxide compound. However, attempted N-oxidation of (3c) with MCPBA resulted in the recovery of unchanged starting material. The ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ long-range COSY spectrum of compound (3c) exhibited a correlation between $8-\mathrm{H}$ at $\delta 8.09$ (J 9.2 Hz) and $\mathrm{C}-4 \mathrm{a}$ at $\delta_{\mathrm{C}} 141.25$. Other long-range correlations are shown by arrows in the Figure. Hence, the nitro group was located at C-6. The position of the nitro group in (4b) was confirmed by a ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ COSY experiment with the corresponding deblocked pyrrolo[1,2- a]quinoxaline (4d). The spectrum of compound ($\mathbf{4 d}$) contained a doublet at low field δ $9.60(J 2.3 \mathrm{~Hz}, 9-\mathrm{H}){ }^{3}$ This coupling constant indicated that the nitro group was located at $\mathrm{C}-8$. This positionally selective synthesis of compounds ($\mathbf{3 c}$) and (4b) most probably proceeds via preferential reaction of C-5 and C-3 in the pyranulose with the more basic amino group in (2b) (Scheme 2). The preponderant product ($\mathbf{3 b}$) would result from preferential reaction at $\mathrm{C}-5$ in the pyranulose by the more basic amino group in (2a).

$+$

	X^{1}	X^{2}	R^{\prime}	R
(3)a;	Cl	H	Bz	Bz
$\mathbf{b} ;$	H	Cl	Bz	Bz
$\mathbf{c} ;$	NO_{2}	H	Bz	Bz
$\mathbf{d} ;$	Cl	H	H	H
$\mathbf{e} ;$	H	Cl	H	H
$\mathbf{f} ;$	NO_{2}	H	H	H
$\mathbf{g} ;$	Cl^{2}	H	H	$\mathrm{R}=\mathrm{CMe}_{2}$
$\mathbf{h} ;$	H	Cl	H	$\mathrm{R}=\mathrm{CMe}_{2}$
$\mathbf{i} ;$	NO_{2}	H	H	$\mathrm{R}=\mathrm{CMe}_{2}$

	X^{1}	X^{2}	R^{\prime}	R
(4)a;	Cl	H	Bz	Bz
b;	H	NO_{2}	Bz	Bz
c;	Cl	H	H	H
d;	H	NO_{2}	H	H
e;	Cl	H	H	$\mathrm{R}=\mathrm{CMe}_{2}$
f;	H	NO_{2}	H	$\mathrm{R}=\mathrm{CMe}_{2}$

Scheme 1.

	X^{1}	X^{2}	R
(5) $\mathbf{a} ;$	Cl	H	Bz
$\mathbf{b} ;$	H	Cl	Bz
$\mathbf{c} ;$	Cl	H	H
$\mathbf{d} ;$	H	Cl	H

	X^{1}	X^{2}	R
(6) $\mathbf{a} ;$	Cl	H	Bz
$\mathbf{b} ;$	H	Cl	Bz
c;	Cl	H	H
d;	H	Cl	H

Deprotection of compounds ($\mathbf{3 a - c}$), ($\mathbf{4 a}, \mathbf{b}$), $(5 a, b)$, and ($\mathbf{6 a}$, b) with methanolic sodium hydroxide afforded products (3df), ($4 \mathbf{c}, \mathrm{~d}$), ($5 \mathrm{c}, \mathrm{d}$), and ($\mathbf{6 c}, \mathrm{d}$), respectively. The assignments of anomeric configurations of compounds ($\mathbf{3 d}-\mathbf{f}$) and ($\mathbf{4 c}, \mathbf{d}$) were made on the basis of the difference in the chemical shifts of the two methyl signals of the corresponding 2,3-O-isopropylidene derivatives ($\mathbf{3 g - i}$) and ($\mathbf{4 e}, \mathbf{f}$). The ${ }^{1} \mathrm{H}$ n.m.r. chemical-shift

(3c)

$R=$

(4c)

Figure The ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ long-range COSY experiments with compounds (3c) and (4c)
differential value ($\Delta \delta$) of the methyl groups in the isopropylidene derivatives is indicative of β stereochemistry in accordance with the Imbach's rule (<0.15 and >0.15 p.p.m. for the α and β anomers) ${ }^{4}$ (see Experimental Section). Deoxygenation of N-oxides ($\mathbf{5 c}$), ($\mathbf{6 c}$), (5 d), and ($\mathbf{6 d}$) with triphenylphosphine in methanol gave (3d) and (3e), respectively. This showed that the β-ribofuranoside configuration had been preserved during the reaction sequence.

Experimental

M.p.s were determined on a Yanagimoto apparatus and are uncorrected. Mass spectra were taken on a Hitachi M-80 instrument by direct insertion at 70 eV , fast-atom bombardment (f.a.b.) mass spectra were run on a JMS-HX 110 using nitrobenzyl alcohol. ${ }^{1} \mathrm{H}$ N.m.r. spectra were measured with a JNM-GX-270 and a GX-400 (JEOL) spectrometer, with tetramethylsilane as internal standard. ${ }^{13} \mathrm{C}$ N.m.r. spectra were recorded on a JEOL JNM-FX-100 Fourier transform spectrometer operating at 25.00 MHz , with tetramethylsilane as internal standard. Elemental analysis were determined by the analytical centre of this faculty. Analytical t.l.c. was performed on glass plates coated with a $0.5-\mathrm{mm}$ layer of silica gel GF_{254} (Merck). The compounds were detected by u.v. light (254 nm). Column chromatography was performed on silica gel C-200 (74-149 $\mu \mathrm{m}$, Wakogel).

6-Chloro- and 7-Chloro-2-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)quinoxaline (3a) and (3b) and 7-Chloro-1-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)pyrrolo[1,2-a]quinoxaline (4a).-A solution of the pyranulose (1) ($825 \mathrm{mg}, 1.48 \mathrm{mmol}$) and $1,2-$ diamino-4-chlorobenzene ($\mathbf{2 a}$) ($253 \mathrm{mg}, 1.77 \mathrm{mmol}$) in chloroform (10 ml) was heated under reflux for 5 h , and then the solvent was evaporated off under reduced pressure. T.l.c. (chloroform-methanol, 9:1) showed that the light yellow syrup contained three major components ($R_{\mathrm{F}} 0.15,0.17$, and 0.18). The mixture was separated by preparative t.l.c. (p.l.c.) with chloroform as developer ($\times 6$).

Compound (3a) ($212 \mathrm{mg}, 23 \%$); $R_{\mathrm{F}} 0.18$; syrup (Found: C, 66.8; $\mathrm{H}, 4.3 ; \mathrm{N}, 4.4 . \mathrm{C}_{34} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{7}$ requires C, $67.05 ; \mathrm{H}, 4.14 ; \mathrm{N}$, $4.60 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.83\left(\mathrm{C}-5^{\prime}\right), 72.66,75.59,80.73,82.55\left(\mathrm{C}-1^{\prime}\right.$, $-2^{\prime},-3^{\prime}$, and -4^{\prime}), $128.24-133.50$ (C-5, $-7,-8$, and -Ar), 136.08 (C-

Table 1. ${ }^{1} \mathrm{H}$ N.m.r. chemical shifts (δ) of certain C-nucleosides

Compound	Solvent ${ }^{\text {a }}$	$1^{\prime}-\mathrm{H}$	2'-H	3'-H		$4^{\prime}-\mathrm{H}$	5'-Ha	$5^{\prime}-\mathrm{Hb}$	3-H		Other
(3a)	A	5.62(d)	6.20(t)	5.99(t)		4.88(m)	4.63(dd)	4.88 (m)	9.06(s)		6-8.10(m, $5-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}$, Ar-H)
(3b)	A	5.62(d)	6.19(t)	6.02(t)		4.87(m)	4.62 (dd)	4.87 (m)	9.04(s)		- 8.11(m, 5-H, 6-H, 8-H, Ar-H)
(3c)	A	5.66(d)	5.97(t)	6.22(t)		4.93(m)	4.64(dd)	4.93(m)	9.23(s)		$\begin{aligned} & 6-8.02(\mathrm{~m}, \mathrm{Ar}-\mathrm{H}), 8.09(\mathrm{~d}, 8-\mathrm{H}) \\ & 8(\mathrm{dd}, 7-\mathrm{H}), 8.94(\mathrm{~d}, 5-\mathrm{H}) \end{aligned}$
(3d)	B	5.35(d)	4.31(t)	4.19(t)		4.13(q)	3.77 (dd)	3.91 (dd)	9.14(s)		$\begin{aligned} & 4(\mathrm{dd}, 7-\mathrm{H}), 8.06(\mathrm{~d}, 8-\mathrm{H}) \\ & 9(\mathrm{~d}, 5-\mathrm{H}) \end{aligned}$
(3e)	C	5.09(d)	4.31(t)	4.19(t)		4.14(q)	3.77(dd)	3.91 (dd)	9.23(s)		$\begin{aligned} & 9(\mathrm{dd}, 6-\mathrm{H}), 8.14(\mathrm{~d}, 5-\mathrm{H}), \\ & 5(\text { apparent s, } 8-\mathrm{H}) \end{aligned}$
(df)	B	5.13(d)	4.34(t)		4.15(m)		3.78(dd)	3.91 (dd)	9.33(s)		$\begin{aligned} & 8(\mathrm{~d}, 8-\mathrm{H}), 8.59(\mathrm{dd}, 7-\mathrm{H}), \\ & 7(\mathrm{~d}, 5-\mathrm{H}) \end{aligned}$
(5a)	A	5.86(d)	6.02 (dd)) $5.81(\mathrm{dd})$		4.86(m)	4.71(m)	4.86(m)	9.04(s)		$\begin{aligned} & 6-8.10(\mathrm{~m}, \text { Ar-H), } 7.68(\mathrm{dd}, 7-\mathrm{H}), \\ & 5(\mathrm{~d}, 5-\mathrm{H}), 8.47(\mathrm{~d}, 8-\mathrm{H}) \end{aligned}$
(5b)	A	5.87(d)	6.01 (dd)	d) $5.82(\mathrm{t})$		4.87(m)	4.71(dd)	4.87(m)	9.01(s)		$\begin{aligned} & 0-7.61,7.90-8.11(\mathrm{~m}, 5-\mathrm{H}, \mathrm{Ar}-\mathrm{H}), \\ & 7(\mathrm{dd}, 6-\mathrm{H}), 8.53(\mathrm{~d}, 8-\mathrm{H}) \end{aligned}$
(5c)	E	5.48(3)	4.31(t)	4.21(t)		4.11(q)	3.91(dd)	4.05 (dd)	9.27(s)		$\begin{aligned} & 4(\mathrm{dd}, 7-\mathrm{H}), 8.15(\mathrm{~d}, 5-\mathrm{H}), \\ & 3(\mathrm{~d}, 8-\mathrm{H}) \end{aligned}$
(5d)	B	4.98(d)	4.27(t)		4.13(m)		3.75(dd)	3.90 (dd)	8.88(s)		$\begin{aligned} & 9(\mathrm{dd}, 6-\mathrm{H}), 8.11(\mathrm{~d}, 5-\mathrm{H}), \\ & 3(\mathrm{~d}, 8-\mathrm{H}) \end{aligned}$
(6a)	A	5.47(d)	6.15(t)	5.89(t)		4.85(m)	4.64(dd)	4.85(m)	8.61(s)		$\begin{aligned} & 9-7.68,7.95-8.09(\mathrm{~m}, 8-\mathrm{H}, \mathrm{Ar}-\mathrm{H}), \\ & 1(\mathrm{dd}, 7-\mathrm{H}), 8.51(\mathrm{~d}, 5-\mathrm{H}) \end{aligned}$
(6b)	A	5.45(d)	6.12(t)	5.91 (t)		4.87(m)	4.63(dd)	4.87(m)	8.57(s)		$\begin{aligned} & 3-8.07(\mathrm{~m}, \mathrm{Ar}-\mathrm{H}), 7.64(\mathrm{dd}, 6-\mathrm{H}), \\ & 2(\mathrm{~d}, 8-\mathrm{H}), 8.44(\mathrm{~d}, 5-\mathrm{H}) \end{aligned}$
(6c)	C	4.85(d)	5.06(dd)) $5.30(\mathrm{t})$		4.12(m)	3.96		8.90(s)		$\begin{aligned} & 6(\mathrm{dd}, 7-\mathrm{H}), 8.14(\mathrm{~d}, 8-\mathrm{H}), \\ & 3(\mathrm{~d}, 5-\mathrm{H}) \end{aligned}$
(6d)	B	4.88(d)	4.18(t)		3.87(m)		3.67(dd)	3.78(dd)	8.77(s)		$\begin{aligned} & 0(\mathrm{dd}, 6-\mathrm{H}), 8.04(\mathrm{~d}, 8-\mathrm{H}), \\ & 0(\mathrm{~d}, 5-\mathrm{H}) \end{aligned}$
Compound	Solvent ${ }^{\text {a }}$	$1^{\prime}-\mathrm{H}$	2'-H	3'-H	$4^{\prime}-\mathrm{H}$	$5^{\prime}-\mathrm{Ha}$	$5^{\prime}-\mathrm{Hb}$	2-H, 3		H-4	Other
(4a)	A	5.88(d)	6.35(dd) 5	5.99 (dd) 4.	4.88(q)) 4.60 (dd)) 4.78 (dd)	6.86(d), 7.0	2(d)	9.04(s)	$\begin{aligned} & 7.29-8.02(\mathrm{~m}, 6-\mathrm{H}, 8-\mathrm{H}, \mathrm{Ar}- \\ & \mathrm{H}), \end{aligned}$
(4b)	A	5.92(d)	$6.38(\mathrm{dd}) 6$	6.00 (dd) 5.0	5.01 (q)) $4.65(\mathrm{dd})$	4.85(dd)	6.97(d), 7	2(d)	$8.86(\mathrm{~s})$	$\begin{aligned} & 8.42(\mathrm{~d}, 9-\mathrm{H}) \\ & 7.26-8.09(\mathrm{~m}, 6-\mathrm{H}, \mathrm{Ar}-\mathrm{H}), \\ & 8.31(\mathrm{dd}, 7-\mathrm{H}), 9.54(\mathrm{~d}, 9-\mathrm{H}) \end{aligned}$
(4c)	C	5.19(d)	4.39(t)	4.03(m)		$3.17-$	-3.49(m)	7.02(d), 7.	3(d)	8.90(s)	$\begin{aligned} & 7.66(\mathrm{dd}, 8-\mathrm{H}), 7.92(\mathrm{~d}, 6-\mathrm{H}), \\ & 8.46(\mathrm{~d}, 9-\mathrm{H}) \end{aligned}$
(4d)	D	5.30(d)	$\begin{aligned} & 4.35- \\ & 4.91(\mathrm{~m}) \end{aligned}$	4.30 (m)		3.83(app	parent d)	7.18(d), 7.2	4(d)	8.89(s)	$\begin{aligned} & 8.05(\mathrm{~d}, 6-\mathrm{H}), 8.32(\mathrm{dd}, 7-\mathrm{H}), \\ & 9.60(\mathrm{~d}, 9-\mathrm{H}) \end{aligned}$

6), 140.17, and 142.69 (C-4a and -8a), 144.85 (C-3), 152.46 (C-2), and $165.39(\mathrm{C}=\mathrm{O})$.

Compound (3b) ($385 \mathrm{mg}, 43 \%$); $R_{\mathrm{F}} 0.17$; syrup (Found: C, 66.8 ; $\mathrm{H}, 4.2 ; \mathrm{N}, 4.3 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.71\left(\mathrm{C}-5^{\prime}\right), 72.66,75.59,80.79$, 82.43 (C-1', -2', -3^{\prime}, and -4^{\prime}), 128.41-133.44 (C-5, $-6,-8$, and -Ar), 136.08 (C-7), 140.87, and 141.87 (C-4a and -8a), 144.15 (C$3), 153.16(\mathrm{C}-2)$, and 165.33 , and $166.03(\mathrm{C}=\mathrm{O})$.

Compound (4a) ($80 \mathrm{mg}, 9 \%$); $R_{\mathrm{F}} 0.15$; foam (Found: C, $67.8 ; \mathrm{H}$, 4.4; $\mathrm{N}, 4.5 . \mathrm{C}_{37} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{7} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.73 ; \mathrm{H}, 4.30, \mathrm{~N}$, $4.27 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.89\left(\mathrm{C}-5^{\prime}\right), 72.72,73.60,75.23,80.62\left(\mathrm{C}-1^{\prime}\right.$, $-2^{\prime},-3^{\prime}$, and -4^{\prime}), 107.76 and 114.31 (C-2 and -3), 118.18 (C-9), $127.54-129.70$ (C-3a, -9a, and -Ar), 130.64 (C-7), 133.21 and 133.62 (C-6 and -8), 138.13 and 138.18 (C-1 and -5a), 146.78 (C4), and 165.21 and $166.03(\mathrm{C}=\mathrm{O})$.

6-Nitro-2-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)quinoxaline (3c) and 8-Nitro-1-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)pyrrolo $[1,2-\mathrm{a}]$ quinoxaline ($\mathbf{4} \mathbf{b}$).-A solution of the pyranulose (1) ($494 \mathrm{mg}, 0.89 \mathrm{mmol}$) and 1,2-diamino-4-nitrobenzene (2b) (163 $\mathrm{mg}, 1.06 \mathrm{mmol})$ in toluene (10 ml) was heated at $90^{\circ} \mathrm{C}$ for 4 h , and then the solvent was evaporated off under reduced pressure. T.l.c. (chloroform-methanol, 99:1) showed that the light yellow syrup contained two major components ($R_{\mathrm{F}} 0.37$ and 0.45). The mixture was separated by p.l.c. with hexane-ethyl acetate (3:1) as developer $(\times 3)$.

Compound (3c) $(89 \mathrm{mg}, 16 \%) ; R_{\mathrm{F}} 0.45$; yellow foam (Found: C,
63.4; $\mathrm{H}, 4.2 ; \mathrm{N}, 6.2 . \mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9} \cdot \frac{3}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 63.15 ; \mathrm{H}$, $4.36 ; \mathrm{N}, 6.45 \%) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.63\left(\mathrm{C}-5^{\prime}\right), 72.58\left(\mathrm{C}-2^{\prime}\right), 75.50(\mathrm{C}-$ $\left.3^{\prime}\right), 81.00\left(\mathrm{C}-4^{\prime}\right), 82.49\left(\mathrm{C}-1^{\prime}\right), 123.65$ (C-7), 125.74 (C-5), 128.39-134.60 (C-Ar), 131.20 (C-8), 141.25 (C-4a), 143.95 (C8a), 146.21 (C-3), 148.01 (C-6), 155.63 (C-2), and 165.35, 165.42, and $166.03(\mathrm{C}=\mathrm{O})$.

Compound (4b) ($140 \mathrm{mg}, 43 \%$); $R_{\mathrm{F}} 0.37$; yellow foam (Found: C, 63.4; $\mathrm{H}, 4.2 ; \mathrm{N}, 6.2 . \mathrm{C}_{37} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{9} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires C, $63.15 ; \mathrm{H}$, 4.36; $\mathrm{N}, 6.50 \%$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.94\left(\mathrm{C}-5^{\prime}\right), 72.31,73.13,74.83$, and 81.08 ($\mathrm{C}-1^{\prime},-2^{\prime},-3^{\prime}$, and $\left.-4^{\prime}\right), 109.28$ and $115.19(\mathrm{C}-2$ and -3$)$, 113.85 (C-9), 119.93 (C-7), 128.53-133.62 (C-1, -3a, -6, -9a, and -Ar), 141.02 and 141.46 (C-8 and -5a), 148.71 (C-4), and 165.21 , 166.03, and $166.50(\mathrm{C}=\mathrm{O})$.

6-Chloro-2-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)quinoxaline 1-Oxide (5a) and 4-Oxide (6a).-To a solution of compound (3a) $(60 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added MCPBA ($81.7 \mathrm{mg}, 0.4 \mathrm{mmol}$), and the mixture was kept at room temperature for 48 h . The solvent was evaporated off under reduced pressure. T.l.c. (benzene-methanol, 99:1) showed that the residue contained two major components (R_{F} 0.36 and 0.35). The mixture was separated by p.l.c. with benzene-methanol (99:1) as developer ($\times 5$).

Compound (5a) ($12 \mathrm{mg}, 19 \%$); $R_{\mathrm{F}} 0.36$; foam (Found: C, 65.0 ; $\mathrm{H}, 4.1 ; \mathrm{N}, 4.3 . \mathrm{C}_{34} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{8}$ requires $\mathrm{C}, 65.33 ; \mathrm{H}, 4.03 ; \mathrm{N}$, $4.48 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.63\left(\mathrm{C}-5^{\prime}\right), 71.90,73.90,78.69$, and 79.27

I
II
V
$\sqrt{1}$

III

IV
$\mid-\mathrm{H}_{2} \mathrm{O}$
(4b)
$R=$

VII
$\mid-\mathrm{MeCOCH}_{2} \mathrm{OH}$
(3c)

Scheme 2.
(C-1', -2', -3^{\prime}, and -4^{\prime}), 120.22 (C-8), 128.47-133.50 (C-2, -5, -7, and -Ar), 136.08 (C-6), 142.69 and 144.85 (C-4a and -8a), 145.91 ($\mathrm{C}-3$), and $165.21(\mathrm{C}=\mathrm{O})$.

Compound ($\mathbf{6 a}$) ($37 \mathrm{mg}, 55 \%$); $R_{\mathrm{F}} 0.35$; foam (Found: C, 65.5 ; $\mathrm{H}, 4.1 ; \mathrm{N}, 4.55 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.53(\mathrm{C}-5$ '), 72.43, 75.47, 80.79 , and 82.08 ($\mathrm{C}-1^{\prime},-2^{\prime},-3^{\prime}$, and -4^{\prime}), 120.28 (C-5), 128.18-133.50 (C-3, -7, -8, and -Ar), 135.37 (C-6), 138.13, and 145.32 (C-4a and $-8 \mathrm{a}), 156.44(\mathrm{C}-2)$, and 165.21, 165.39, and $166.15(\mathrm{C}=\mathrm{O})$.

7-Chloro-2-(2,3,5-tri-O-benzyol- β-D-ribofuranosyl)quinoxa-
line 1-Oxide (5b) and 4-Oxide (6b).-The same procedure was used as for the reaction of ($\mathbf{3 a}$) with MCPBA, but with substrate (3b).

Compound (5b) (17%); $R_{\mathrm{F}} 0.32$; foam (Found: C, 65.4 ; H, 4.4; $\mathrm{N}, 4.2 \%) ; \delta_{(}\left(\mathrm{CDCl}_{3}\right) 63.42\left(\mathrm{C}-5^{\prime}\right), 71.96,73.95,78.63$, and 79.39 (C-1', $-2^{\prime},-3^{\prime}$, and -4'), 118.23 (C-8), 128.47-133.44 (C-2, -5, -6, and -Ar), 137.01 (C-7), 139.12, and 143.86 (C-4a and -8a), 144.79 ($\mathrm{C}-3$), and 165.21, and $166.21(\mathrm{C}=\mathrm{O})$.

Compound (6b) (46%); $R_{\mathrm{F}} 0.31$; foam (Found: C, 64.6; H, 4.3; $\mathrm{N}, 4.3 . \mathrm{C}_{34} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{8} \frac{1}{3} \mathrm{H}_{2} \mathrm{O}$ requires C, 64.71; $\mathrm{H}, 4.15 ; \mathrm{N}$,

Table 2. ${ }^{1} \mathrm{H}$ N.m.r. coupling constants (Hz) of certain C-nucleosides

Compound	$1^{\prime}, 2^{\prime}$	$2^{\prime}, 3^{\prime}$	$3^{\prime}, 4^{\prime}$	$4^{\prime}, 5^{\prime} \mathrm{a}$	$4^{\prime}, 5^{\prime} \mathrm{b}$	$5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}$	5,6	5,7	6,8	7,8	
(3a)	4.7	4.7	4.7	3.7	a	11.8		a		a	
(3b)	5.0	5.0	5.0	3.7	a	8.1	a		a		
(3c)	4.7	4.7	4.7	3.7	a	12.1		2.6		9.2	
(3d)	5.3	5.3	5.3	3.7	3.0	12.1		2.4		9.1	
(3e)	5.3	5.3	5.3	4.0	3.3	12.1	9.1		2.4		
(3f)	5.7	5.7	a	4.0	3.0	11.8		2.4		9.4	
(5a)	3.7	5.7	7.4	a	a	a		2.4		9.4	
(5b)	3.7	3.7	3.7	4.0	a	11.4	8.7		2.4		
(5c)	3.4	3.4	3.4	3.4	3.4	8.1		2.0		9.4	
(5d)	5.4	5.4	5.4	4.0	3.0	12.4	9.1		2.3		
(6a)	4.7	4.7	4.7	3.4	a	11.8		2.0		9.1	
(6b)	4.7	4.7	4.7	3.7	a	11.4	9.4		2.4		
(6c)	4.7	4.0	4.7	a	a	a		2.4		9.1	
(6d)	5.0	5.0	a	4.4	3.2	11.4	9.4		2.0		
Compound	$1^{\prime}, 2^{\prime}$	$2^{\prime}, 3^{\prime}$	$3^{\prime}, 4^{\prime}$	$4^{\prime}, 5^{\prime} \mathrm{a}$	$4^{\prime}, 5^{\prime} \mathrm{b}$	$5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}$	2, 3	6,7	6,8	7,9	8,9
(4a)	7.1	5.7	4.0	3.7	3.3	12.1	4.3		a		9.0
(4b)	7.7	4.4	4.0	4.4	3.3	12.1	4.3	8.7		2.4	
(4c)	7.0	4.3	a	a	a	a	4.0		2.4		9.1
(4d)	7.7	a	a	a	a	a	4.0	9.0		2.3	

${ }^{a}$ Unresolved.
$4.43 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 63.59\left(\mathrm{C}-5^{\prime}\right), 72.37,75.47,80.67$, and $82.08(\mathrm{C}-$ $1^{\prime},-2^{\prime},-3^{\prime}$, and $\left.-4^{\prime}\right), 118.23$ (C-5), 128.41-133.50 (C-3, $-6,-8$, and -Ar), 136.60 (C-7), 138.30 , and 143.45 (C-4a and -8a), 155.32 (C$2)$, and $165.70,165.39$, and $166.15(\mathrm{C}=\mathrm{O})$.

General Deoxygenation Procedure.-A solution of a quinoxaline N-oxide and triphenylphosphine in methanol was heated under reflux for 3 h , and then the solvent was evaporated off under reduced pressure. The residue was purified by p.l.c with diisopropyl ether-methanol (93:7) as developer, to give the corresponding deoxygenated C-nucleoside. Identification was confirmed by comparison of i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra with those of the deoxygenated C-nucleosides.

General Deprotection Procedure.-Sufficient methanolic sodium hydroxide was added to the protected C-nucleoside in absolute methanol. The mixture was kept at room temperature for 5 h , rendered neutral with acetic acid, and evaporated. The residue was purified by p.l.c. to afford the free C-nucleoside.
6 -Chloro-2-(β-D-ribofuranosyl)quinoxaline ($\mathbf{3 d}$). This compound (61%) was obtained from the tri- O-benzoate (3a), as crystals m.p. $178-181^{\circ} \mathrm{C}$ (from methanol) (Found C, $52.4 ; \mathrm{H}$, 4.1; $\mathrm{N}, 9.8 . \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$ requires C, $52.61 ; \mathrm{H}, 4.42 ; \mathrm{N}, 9.44 \%$); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 61.40\left(\mathrm{C}-5^{\prime}\right), 71.14,76.58,83.95$, and $85.30\left(\mathrm{C}-1^{\prime}\right.$, $-2^{\prime},-3^{\prime}$, and -4^{\prime}), 127.59, 130.58, and 130.81 (C-5, -7 , and -8), 134.03 (C-6), 139.30 and 141.69 (C-4a and -8a), 145.56 (C-3), and 156.38 (C-2).

7-Chloro-2-(β-D-ribofuranosyl)quinoxaline (3e). This compound (71%) was obtained from the tri-O-benzoate ($\mathbf{3 b}$), as crystals m.p. $145-147^{\circ} \mathrm{C}$ (from methanol) (Found: C, $52.8 ; \mathrm{H}$, 4.3; N, 9.6\%); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 61.31$ (C-5'), 71.14, 76.76, 84.01, and 85.24 (C-1', $-2^{\prime},-3^{\prime}$, and -4^{\prime}), 127.42, 130.34, and 130.70 (C-5, -6, and -8), 134.56 (C-7), 140.00 , and 140.99 (C-4a and -8a), 144.91 (C-3), and 156.96 (C-2).

6 -Nitro-2-(β-D-ribofuranosyl)quinoxaline (3f). This compound (25%) was obtained from the tri- O-benzoate ($\mathbf{3 c}$), as pale yellow crystals m.p. $253-255^{\circ} \mathrm{C}$ (from methanol) (Found: C, $50.9 ; \mathrm{H}, 4.35 ; \mathrm{N}, 14.0 . \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $50.81 ; \mathrm{H}, 4.26 ; \mathrm{N}$, 13.68%).

7-Chloro-1-(β-D-ribofuranosyl) pyrrolo[1,2-a]quinoxaline
($\mathbf{4 c}$). This compound (97%) was obtained from the tri-Obenzoate (4a), as needles m.p. $196-199^{\circ} \mathrm{C}$ (from methanol)
(Found: C, 51.9 ; $\mathrm{H}, 5.4 ; \mathrm{N}, 7.4 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 51.83 ; \mathrm{H}, 5.17 ; \mathrm{N}, 7.56 \%$) $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 61.68$ (C-5'), 71.05 (C-3'), 73.75 (C-2'), 75.55 (C-1'), 85.31 (C-4'), 107.89, and 114.53 (C-2 and -3), 119.07 (C-9), 127.32 (C-9a), 127.42 (C-3a), 127.64 (C-8), $128.30(\mathrm{C}-6), 129.06(\mathrm{C}-7), 131.26(\mathrm{C}-1), 137.93(\mathrm{C}-5 \mathrm{a})$, and 147.12 (C-4).

8-Nitro-1-(β-D-ribofuranosyl) pyrrolo[1,2-a]quinoxaline (4d). This compound (30%) was obtained from the tri- O-benzoate (4b), as yellow needles m.p. 254-255 ${ }^{\circ} \mathrm{C}$ (from methanol) (Found: C, 53.0; $\mathrm{H}, 4.8 ; \mathrm{N}, 11.6 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , $52.89 ; \mathrm{H}, 4.72 ; \mathrm{N}, 11.57 \%)$; $\left.\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)\right] 61.54\left(\mathrm{C}-5^{\prime}\right), 70.84$ (C-3'), 73.45 (C.2'), 74.94 (C-1'), 85.97 (C-4'), 109.38, and 115.16 (C-2 and -3), 113.95 (C-9), 119.71 (C-7), 127.55 (C-3a), 127.83 (C9a), 130.22 (C-6), 131.92 (C-1), 141.14 (C-5a), 145.18 (C-8), and 148.94 (C-4).

6-Chloro-2-(β-D-ribofuranosyl)quinoxaline 1-Oxide (5c). This compound (84%) was obtained from the tri- O-benzoate (5a), as crystals m.p. $165-166^{\circ} \mathrm{C}$ (from methanol) \{Found: $[M+\mathrm{H}]^{+}$ (f.a.b.), 313.0542. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{5}$ requires $\left.M+\mathrm{H}, 313.0591\right\}$.

6 -Chloro-2-(β-D-ribofuranosyl) quinoxaline 4 -Oxide (6 c). This compound (88%) was obtained from the tri- O-benzoate (6 a), as crystals m.p. 204-206 ${ }^{\circ} \mathrm{C}$ (from methanol) \{Found: $[M+\mathrm{H}]^{+}$ (f.a.b.), 313.0584. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{5}$ requires $\left.M+\mathrm{H}, 313.0591\right\}$.

7-Chloro-2-(β-D-ribofuranosyl)quinoxaline 1-Oxide (5d). This compound $(82 \%$) was obtained from the tri- O-benzoate (5b), as crystals m.p. $182-183^{\circ} \mathrm{C}$ (from methanol) \{Found: $[M+\mathrm{H}]^{+}$(f.a.b.), 313.0577. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{5}$ requires $M+\mathrm{H}$, $313.0591\}$.

7-Chloro-2-(β-D-ribofuranosyl) quinoxaline 4-Oxide (6d). This compound $(87 \%$) was obtained from the tri- O-benzoate ($\mathbf{6 b}$), as crystals m.p. $144-146^{\circ} \mathrm{C}$ (from benzene-hexane, 1:1) \{Found: $[M+\mathrm{H}]^{+}$(f.a.b.), 313.0583. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{5}$ requires $M+H$, $313.0591\}$.

General Acetonization Procedure.-To a solution of a deprotected C-nucleoside in acetone was added acetone containing toluene- p-sulphonic acid monohydrate and the mixture was kept at room temperature for 2 h . The reaction mixture was neutralized with sodium hydrogen carbonate and stirred for 15 min . The solid was collected by filtration and thoroughly washed with acetone. The filtrate and washings were combined, and evaporated under reduced pressure to give a syrup, which
was purified by p.l.c. with chloroform-methanol (97:3) as developer.
6-Chloro-2-(2,3-O-isopropylidene- β-D-ribofuranosyl)-quinoxaline ($\mathbf{3 g}$). This compound (49%) was obtained from the deprotected nucleoside ($\mathbf{3 d}$), as a foam; $R_{\mathrm{F}} 0.32$ (chloroformmethanol, 97:3); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39$ and $1.67(6 \mathrm{H}$, each s , isopropylidene Me$), 3.75\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.02(1 \mathrm{H}, \mathrm{dd}, J 2.3$ and $\left.12.1 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.22\left(1 \mathrm{H}, \mathrm{q}, 4^{\prime}-\mathrm{H}\right), 4.96\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{H}\right)$, $5.35\left(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.75(1 \mathrm{H}, \mathrm{dd}, J 2.3$ and $9.1 \mathrm{~Hz}, 7-\mathrm{H})$, $8.02(1 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}, 8-\mathrm{H}), 8.14(1 \mathrm{H}, \mathrm{d}, J 2.3 \mathrm{~Hz}, 5-\mathrm{H})$, and 8.92 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$).

7-Chloro-2-(2,3-O-isopropylidene- β-D-ribofuranosyl)-quinoxaline ($\mathbf{3 h}$). This compound (52%) was obtained from the deprotected nucleoside (3e), as a foam; $R_{\mathrm{F}} 0.32$ (chloroformmethanol, $97: 3) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39$ and $1.67(6 \mathrm{H}$, each s, isopropylidene Me$), 3.72\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.02(1 \mathrm{H}, \mathrm{dd}, J 3.7$ and $12.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{\mathrm{b}}$), $4.22\left(1 \mathrm{H}, \mathrm{q}, 4^{\prime}-\mathrm{H}\right), 4.96\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{H}\right)$, $5.35\left(1 \mathrm{H}, \mathrm{d}, J 4.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.74(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $9.1 \mathrm{~Hz}, 6-\mathrm{H})$, $8.06-8.09(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 8-\mathrm{H})$, and $8.90(1-\mathrm{H}, \mathrm{s}, 3-\mathrm{H})$.

6-Nitro-2-(2,3-O-isopropylidene- β-D-ribofuranosyl) quinoxaline (3 i). This compound (56%) was obtained from the deprotected nucleoside ($\mathbf{3 f}$), as a foam; $R_{\mathrm{F}} 0.30$ (chloroformmethanol, 99:1); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.92$ and $2.12(6 \mathrm{H}$, each s , isopropylidene Me), $4.03-4.45\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.62-$ $4.92\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}\right.$-and $\left.3^{\prime}-\mathrm{H}\right), 5.20\left(1 \mathrm{H}, \mathrm{d}, J 4.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 8.64(1-\mathrm{H}$, d, $J 9.6 \mathrm{~Hz}, 8-\mathrm{H}), 8.96(1 \mathrm{H}$, dd, $J 2.3$ and $9.6 \mathrm{~Hz}, 7-\mathrm{H}), 9.33(1 \mathrm{H}$, d, $J 2.3 \mathrm{~Hz}, 5-\mathrm{H})$, and $9.66(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$.

7-Chloro-1-(2,3-O-isopropylidene- β-D-ribofuranosyl)pyrrolo-[1,2-a]quinoxaline (4e). This compound (43%) was obtained
from the deprotected nucleoside ($\mathbf{4 c}$), as a foam; $R_{\mathrm{F}} 0.33$ (chloroform); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37$ and $1.55(6 \mathrm{H}$, each s , isopropylidene Me), $3.18-3.50\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.37\left(1 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.12$ and $7.24(2 \mathrm{H}$, each d, $J 4.0 \mathrm{~Hz}, 2$ - and $3-\mathrm{H}), 7.47(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $8.1 \mathrm{~Hz}, 8-\mathrm{H}), 7.93(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, 6-\mathrm{H}), 8.42(1 \mathrm{H}, \mathrm{d}, J 8.1$ $\mathrm{Hz}, 9-\mathrm{H})$, and $8.92(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$.

8-Nitro-1-(2,3-O-isopropylidene- β-D-ribofuranosyl)pyrrolo-[1,2-a]quinoxaline ($\mathbf{4 f}$). This compound (47%) was obtained from the deprotected nucleoside ($\mathbf{4 d}$), as a foam; $R_{\mathbf{F}} 0.33$ (chloroform); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39$ and $1.55(6 \mathrm{H}$, each s , isopropylidene Me), $3.18-3.51\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $4^{\prime}-\mathrm{H}$, and $\left.5^{\prime}-\mathrm{H}_{2}\right)$, $4.19\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.35\left(1 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 7.22$ and $7.35(2$ H, each d, $J 4.0 \mathrm{~Hz}, 2$-and $3-\mathrm{H}), 8.09(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, 6-\mathrm{H}), 8.34$ $(1 \mathrm{H}, \mathrm{dd}, J 2.7$ and $8.7 \mathrm{~Hz}, 7-\mathrm{H}), 9.07(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, and $9.40(1 \mathrm{H}$, d, $J 2.7 \mathrm{~Hz}, 9-\mathrm{H}$).

References

1 I. Maeba, T. Takeuchi, T. Ijima, and H. Furukawa, J. Org. Chem., 1988, 53, 1401.
2 S. N. Mannore, J. L. Bose, A. A. Thaker, and M. S. Wadia, Indian J. Chem., 1975, 13, 609.
3 J. Cobb and G. W. H. Cheeseman, Mag. Reson. Chem., 1986, 24, 231.
4 J.-L. Imbach and B. L. Kam, J. Carbohydr. Nucleosides, Nucleotides, 1974, 1, 271.

[^0]: † Part 10. I. Maeba, K. Kitaori, and C. Ito, J. Org. Chem., 1989, 54, 3927.

